High Dimensional Function Approximation [ Regression, Hypersurface Fitting ] by an Active Set Least Squares Learning Algorithm
نویسنده
چکیده
1 1 Basics of Developing Regression Models from Data 3 1.1 Classic Regression Support Vector Machines Learning Setting 3 2 Active Set Method for Solving QP Based SVMs’ Learning 11 3 Active Set Least Squares (AS-LS) Regression 15 3.1 Implementation of the Active Set Least Squares Algorithm 19 3.1.1 Basics of Orthogonal Transformation 20 3.1.2 An Iterative Update of the QR Decomposition by Householder Reflection 21 3.2 An Active Set Least Squares with Weights Constraints – Bounded LS Problem 26 4 Comparisons of SVMs and AS-LS Regression 29 4.1 Performance of an Active Set Least Squares (AS-LS) without Constraints 32 4.2 Performance of a Bounded Active Set Least Squares (AS-BLS) with Constraints 33
منابع مشابه
An AS-LS Algorithm by QR Factorization Based on Householder Reflections in an Approximation of a 1-Dimensional Decreasing Undamped Sinus Function
1 1 Basics of Developing Regression Models from Data 3 1.1 Classic Regression Support Vector Machines Learning Setting 3 2 Active Set Method for Solving QP Based SVMs’ Learning 11 3 Active Set Least Squares (AS-LS) Regression 15 3.1 Implementation of the Active Set Least Squares Algorithm 19 3.1.1 Basics of Orthogonal Transformation 20 3.1.2 An Iterative Update of the QR Decomposition by Househ...
متن کاملOptimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method
Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملA Sparse Regularized Least-Squares Preference Learning Algorithm
Learning preferences between objects constitutes a challenging task that notably differs from standard classification or regression problems. The objective involves prediction of ordering of the data points. Furthermore, methods for learning preference relations usually are computationally more demanding than standard classification or regression methods. Recently, we have proposed a kernel bas...
متن کاملMultidimensional Least-squares Fitting of Fuzzy Models
We describe a new method for the fitting of differentiable fuzzy model functions to crisp data. The model functions can be either scalar or multidimensional and need not be linear. The data are n-component vectors. An efficient algorithm is achieved by restricting the fuzzy model functions to sets which depend on a fuzzy parameter vector and assuming that the vector has a conical membership fun...
متن کامل